

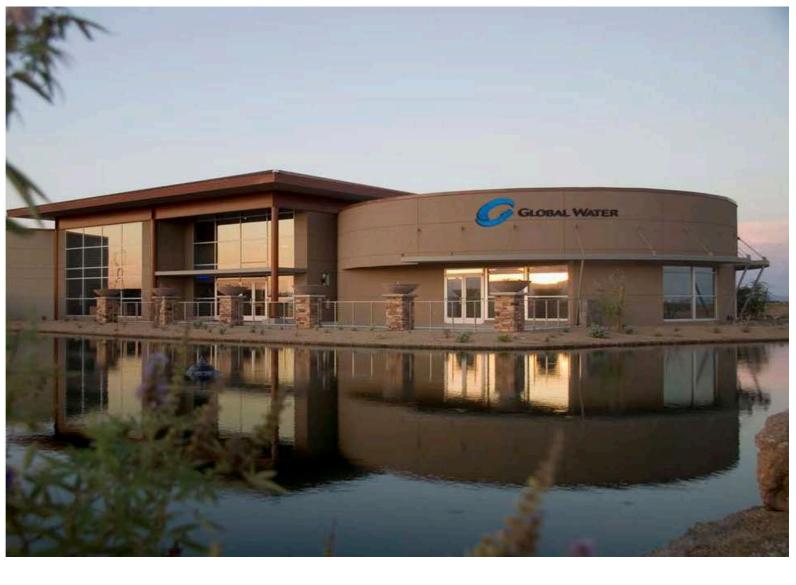
Global Water Resources is pleased to present the annual drinking water quality report. (Consumer Confidence Report) for calendar year 2023. This report contains important information about the quality and safety of your water.

Spanish (Espanol)

Este informe contiene information muy importante sobre la calidad de su agua para beber. Traduscalo o hable con aguien que lo entiends bien.

Customer Resources

Global Water's customer assistance program helps customers for the following purposes:


- Low-Income Assistance
- Deployed Service Member Assistance
- Disabled Veteran Assistance
- Furloughed Worker Assistance
- Medical Hardship Assistance

If you are a Global Water customer who is in need of assistance, you can find more information about our Customer Assistance Program at:

https://www.gwresources.com/customer-assistance or you can call us at 866-940-1102.

Customer Portal: https://gwresources.watersmart.com/index.php/welcome

- View and pay your bill on-line or on your smart phone.
- Set up automatic payments.
- View monthly reads.
- Manage multiple accounts.
- Provide account access to multiple people.

What is a Consumer Confidence Report (CCR)?

The purpose of a CCR is to improve public health protection by providing educational material that allows consumers to make educated decisions regarding any potential health risks pertaining to the quality, treatment, and management of their drinking water supply. To ensure that tap water is safe to drink, the United States Environmental Protection Agency (EPA) prescribes regulations which limit the concentration of certain contaminants in water provided by public water systems. The Food and Drug Administration (FDA) regulations establish equivalent limits for contaminants in bottled water which must provide the same protection for public health. This report provides a summary of the water quality tests and measurements taken in 2023 for this Public Water System.

To learn more about how to help protect your drinking water sources, any details provided in this report, or to attend a scheduled public meeting please contact Jon Corwin or Holly Wilson at the GWR office at (866) 940 - 1102 or visit our website at www.gwresources.com. For more information about drinking water contaminants, their regulations and potential health effects, call the EPA Safe Drinking Water Hotline at 1-800-426-4791.

Water Source and Distribution System

The water source for Global Water - Belmont Company -Garden City groundwater. Currently, Global Water Belmont Water Company - Garden City uses one well. Groundwater from this well is pumped into two storage tanks, also called reservoirs. Reservoirs are also used for continuous supply and to quarantee adequate water flows. There is one fire hydrant within the system that is flushed and maintained regularly. Flushing of the hydrant assures that it is operable, and it helps move water throughout the system while improving water quality.

Garden City uses sodium hypochlorite for disinfection of the water. Groundwater in Arizona is low in Total Organic Carbon (TOC). When sodium hypochlorite is added to water, it reacts with TOC to form disinfection byproducts. Due to low TOC content, these byproducts are low in potable water that originates from groundwater.

Global Water Resources monitors drinking water from the source, from the entry point into the distribution system, and in some cases from the taps of individual homes.

Backflow and Cross- Connection

To protect consumers from contamination caused by backflow through unprotected cross connections, Global Water requires installation and periodic testing of backflow prevention assemblies. Water pressure in drinking water pipes both commercial or residential can suddenly drop during high water use in homes or in the distribution system (firefighting, water main break etc.) The Global Water Backflow/Cross Connection Control Program assures that assemblies are tested and maintained as needed.

Source Water Assessment (SWA)

The sources of drinking water (both tap and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land through the ground, it dissolves naturally occurring minerals and, in some cases radioactive material and can pick substances resulting from the presence of animals or from human activity. In 2004 the Department of Environmental Arizona Quality (ADEQ) completed a Source Water Assessment for the well which supplies water to the Garden City system. The assessment reviewed the hydrogeologic conditions and adjacent land uses that may pose a potential risk to the water sources. These risks include, but are not limited to, gas stations, landfills, agriculture, dry-cleaners, wastewater treatment plants, and mining activities. The assessment determined that the wells had a low risk of contamination due to adjacent land uses. The complete assessment is available for inspection at ADEQ.

Drinking Water Contaminants

The sources of drinking water (both tap and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals, and in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- ♣ Inorganic contaminants, such as salts and metals can be naturally- occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- **Pesticides and herbicides**, such as agriculture, urban storm water runoff, and residential uses that may come from a variety of sources.
- ♣ Organic chemical contaminants, such as synthetic and volatile organic chemicals, are by-products of industrial processes and petroleum production, and may also come from gas stations, urban storm water runoff, and septic systems.
- **Radioactive contaminants**, that can be naturally occurring or be the result of oil and gas production and mining activities.

Potential Contaminants of Concern

- ♣ Arsenic: If arsenic is less than or equal to the MCL, your drinking water meets EPA's standards. EPA's standard balances the current understanding of arsenic's possible health effects against the costs of removing arsenic from drinking water. EPA continues to research the effects of low levels of arsenic, which is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects such as skin damage and circulatory problems.
- ▶ **Nitrate:** Nitrate in drinking water at levels above 10 ppm is a health risk for infants of less than six months of age. High nitrate levels in drinking water can cause blue baby syndrome. Nitrate levels may rise quickly for short periods of time because of rainfall or agricultural activity. If you are caring for an infant, and detected nitrate levels are above 5 ppm, you should ask advice from your health care provider.
- Lead: Lead, in drinking water, is primarily from materials and components associated with service lines and home plumbing. If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Garden City Water Company is responsible for providing high quality drinking water but cannot control the variety of materials used in residential plumbing components. When your water has been sitting for several hours, you can reduce the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at www.epa.gov/safewater/lead.

Additional Health Information

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. Some people may be more vulnerable to contaminants in drinking water than the general population.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. For more information about contaminants and potential health effects, or to receive a copy of the U.S. Environmental Protection Agency (EPA) and the U.S. Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and microbiological contaminants call the EPA Safe Drinking Water Hotline at 1-800-426-4791.

Key Definitions

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Action Level (AL): The concentration of a contaminant, which if exceeded, triggers treatment, or other requirements.

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected health risk.

Maximum Residual Disinfectant Level (MRDL): The level of disinfectant added for water treatment that may not be exceeded at the consumer's tap.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of disinfectant added for treatment at which no known or anticipated adverse effect on health of persons would occur.

Not Detected (ND or <): Not detectable at reporting limit.

Not Applicable (NA): Sampling was not completed by regulation or was not required.

Nephelometric Turbidity Units (NTU): A measure of water clarity.

ppm: Parts per million or Milligrams per liter (mg/L) **ppb:** Parts per billion or Micrograms per liter (μg/L) **ppt:** Parts per trillion or Nanograms per liter (ng/L)

pCi/L: Measure of the radioactivity in water.

WATER QUALITY TABLES

MCL, TT, or

2023 Water Quality Data Tables – GW – Belmont Water Company - Garden City

Primary	Contaminants	
.G or MRDLG	Range (Avg)	Likely Source of Contam

A	ilalyte	Onit	MRDL	WICEG OF WINDEG	Ralige (Avg)	Likely Source of Contamination	
Inorganic C	Contaminants						
Arsenic	2022	ppb	10	0	6.5	Erosion of natural deposits, runoff from orchards, runoff from glass and electronics production wastes	
Fluoride	2022	ppm	4	4	2.2	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories	
Nitrate	2023	ppm	10	10	3.0	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits	
Chromium	2022	ppb	100	100	59.0	Discharge from steel and pulp mills; erosion of natural deposits	
Barium	2022	ppm	2	2	0.0063	Discharge from drilling waste; discharge from metal refineries; erosion of natural deposits	
Radionuclide Contaminants							
Combined Ra	ndium 2022	pCi/L	5	5	<0.7	Erosion of natural deposits	
Alpha Emitte	rs 2022	pCi/L	15	15	4.6	Erosion of natural deposits	

Secondary Contaminants

Analyte	Unit	MCL, TT, or MRDL	MCLG or MRDLG	Range (Avg)	Likely Source of Contamination
Hardness as CaCo3 2019, 2023	ppm	NA	NA	69-200 (134.5)	Naturally present in the environment
Magnesium 2019, 2023	ppm	NA	NA	6.3-8.5 (7.4)	Naturally present in the environment
Sodium 2019, 2022, 2023	ppm	NA	NA	160-630 (465)	Naturally present in the environment
Sulfate 2019	ppm	NA	NA	1400	Naturally present in the environment
Calcium 2019, 2023	ppm	NA	NA	14-70 (42)	Naturally present in the environment
Alkalinity 2019, 2023	ppm	NA	NA	120-160 (140)	Naturally present in the environment
Total Dissolved Solids (TDS) 2019, 2023	ppm	NA	NA	520-2000 (1260)	Naturally present in the environment

Disinfection and Disinfection By-Products (DBPs)

	Analyte	Unit	MCL, TT, or MRDL	MCLG or MRDLG	Range (Avg)	Likely Source of Contamination
Chlorine	2023	ppm	4	4	0.8-1.9 (1.3)	Water additive used to control microbes
Total Triha 2023	lomethanes (TTHM)	ppb	80	NA	1.6	By-product of drinking water disinfection
Haloacetic	Acids (HAA5) 2023	ppb	60	NA	<2	By-product of drinking water disinfection

Lead and Copper

	Analyte	Unit	AL	Sampling	90th Percentile	Likely Source of Contamination
Copper	2022	ppm	1.3	5 samples from consumer's tap	0.04	Corrosion of household plumbing systems; erosion of natural deposits
Lead	2022	ppb	15	5 samples from consumer's tap	0	Corrosion of household plumbing systems; erosion of natural deposits

Revised Total Coliform Rule (RTCR) - Microbiological

Microbiological	MCL/M CLG	Number of Positive Samples	Number of Negative Samples	Violation Y or N	Likely Source of Contamination
E. Coli 2023	0	0	12	N	Human and animal fecal waste
Fecal Indicator 2023 (From GWR source)	0	0	12	N	Human and animal fecal waste
Total Coliform Bacteria 2023	0	0	12	N	Naturally present in the environment

^{*}No PFAS/PFOA were detected in the drinking water for Belmont Water Company - Garden City sampled by ADEQ in 2023.

Additional Information on Fluoride

This is an alert about your drinking water and a cosmetic dental problem that might affect children under nine years of age. At low levels, fluoride can help prevent cavities, but children drinking water containing more than 2 milligrams per liter (mg/l) of fluoride may develop cosmetic discoloration of their permanent teeth (dental fluorosis). The drinking water provided by your community water system Belmont Water Company – Garden City has a fluoride concentration of 2.2 mg/l.

Dental fluorosis, in its moderate or severe forms, may result in a brown staining and/or pitting of the permanent teeth. This problem occurs only in developing teeth, before they erupt from the gums. Children under nine should be provided with alternative sources of drinking water or water that has been treated to remove the fluoride to avoid the possibility of staining and pitting of their permanent teeth. You may also want to contact your dentist about proper use by young children of fluoride-containing products. Older children and adults may safely drink the water.

Drinking water containing more than 4 mg/L of fluoride (the U.S. Environmental Protection Agency's drinking water standard) can increase your risk of developing bone disease. Your drinking water does not contain more than 4 mg/l of fluoride, but we're required to notify you when we discover that the fluoride levels in your drinking water exceed 2 mg/l because of this cosmetic dental problem.

For more information, please call Holly Wilson of GW- Belmont Water Company- Garden City at 520-483-4575. Some home water treatment units are also available to remove fluoride from drinking water. To learn more about available home water treatment units, you may call NSF International at 1-877-8-NSF-HELP.

Conservation and Drought

How do we ensure that a vital resource will be here 100 years from now?

At Global Water, we plan for the future by investing in conservation and water recycling and by applying the right water for the right use. That is why Global Water is more than a utility, we are resource managers. Our Total Water Management philosophy has resulted in over 16 billion gallons of saved water within the state of Arizona!

Water Conservation Rates

Global Water offers water conservation rates and a conservation rebate to incentivize using less water. If a customer uses a water volume below the rebate threshold, they can receive a rebate equal to 60% of the commodity rate.

Advanced Metering Infrastructure (AMI)

AMI meters utilized in our service areas send hourly water use information and alerts related to leaks and high usage through an online WaterSmart portal.

Water Conservation Program

Our conservation program at Global Water offers a variety of services and information including education programming for K12 students, adults, and landscape professionals as well as community outreach and water conservation resources for all customers.

For water conservation resources and to learn more about our conservation program, please visit https://www.gwresources.com/conservation-education.